Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 691
Filtrar
1.
Water Res ; 256: 121643, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38663211

RESUMO

Tire wear particles (TWPs) enter aquatic ecosystems through various pathways, such as rainwater and urban runoff. Additives in TWPs can harm aquatic organisms in these ecosystems. Therefore, it is essential to investigate their toxicity to aquatic organisms. In our study, we initially recorded the median effective concentrations of 21 TWP-derived compounds on Chlorella vulgaris growth, ranging from 0.04 to 8.60 mg/L. Subsequently, through an extensive review of the literature, we incorporated 112 compounds with specific toxicity endpoints to construct the QSAR model using genetic algorithm and multiple linear regression techniques, followed by the construction of the consensus model and the quantitative read-across structure-activity relationship (q-RASAR) model. Meanwhile, we employed rigorous internal and external validation measures to assess the performance of the model. The results indicated that the developed q-RASAR model exhibited strong adaptation, robustness, and reliable prediction, with q-RASAR indicators of Q2LOO = 0.7673, R2tr = 0.8079, R2test = 0.8610, Q2Fn = 0.8285-0.8614, and CCCtest = 0.9222. Based on an external dataset containing 128 emerging TWP-derived compounds, the model's applicability domain coverage was 90.6 %. The q-RASAR model predicted that the structure of diphenylamine was associated with higher toxicity, possibly liked to the SpMax2_Bhm and LogBCF descriptors. The established model reliably provides prediction and fills a critical data gap. These findings highlight the potential risks posed by emerging TWP-derived compounds to aquatic organisms.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38561535

RESUMO

In recent years, there has been a significant rise in the utilization of amino-functionalized polystyrene nanoplastics (PS-NH2). This surge in usage can be attributed to their exceptional characteristics, including a substantial specific surface area, high energy, and strong reactivity. These properties make them highly suitable for a wide range of industrial and medical applications. Nevertheless, there is a growing apprehension regarding their potential toxicity to aquatic organisms, particularly when considering the potential impact of heavy metals like lead (Pb) on the toxicity of PS-NH2. Herein, we examined the toxic effects of sole PS-NH2 (90 nm) at five concentrations (e.g., 0, 0.125, 0.25, 0.5, and 1 mg/L), as well as the simultaneous exposure of PS-NH2 and Pb2+ (using two environmental concentrations, e.g., 20 µg/L for Pb low (PbL) and 80 µg/L for Pb higher (PbH)) to the microalga Chlorella vulgaris. After a 96-h exposure, significant differences in chlorophyll a content and algal growth (biomass) were observed between the control group and other treatments (ANOVA, p < 0.05). The algae exposed to PS-NH2, PS-NH2 + PbL, and PS-NH2 + PbH treatment groups exhibited dose-dependent toxicity responses to chlorophyll a content and biomass. According to the Abbott toxicity model, the combined toxicity of treatment groups of PS-NH2 and PbL,H showed synergistic effects. The largest morphological changes such as C. vulgaris' size reduction and cellular aggregation were evident in the medium treated with elevated concentrations of both PS-NH2 and Pb2+. The toxicity of the treatment groups followed the sequence PS-NH2 < PS-NH2 + PbL < PS-NH2 + PbH. These results contribute novel insights into co-exposure toxicity to PS-NH2 and Pb2+ in algae communities.

3.
Poult Sci ; 103(6): 103721, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38613915

RESUMO

Microalgae have potentially beneficial effects on animal health and nutritional value when added to feed. Crucial hereby is that intracellular bio-active molecules are released in the intestinal tract. Digestibility of Chlorella vulgaris and its impact on total digestibility of broiler feed is a first step in assessing its characteristics as feed supplement. Different methods could be used to increase the digestibility of the algae. Among other, pulsed electric field (PEF) and freezing to disrupt autotrophic (A) and heterotrophic (H) Chlorella vulgaris cells was assessed to increase their availability followed by in-vivo trials. In these trials effect of algae type (A and H) and effect of PEF-processing was evaluated on the apparent nutrient digestibility. Pulsed electric field showed to have a disruption efficiency of 83.90% and 79.20% for heterotrophic and autotrophic C. vulgaris respectively. Freezing C. vulgaris only showed efficiencies ranging from 3.86 to 11.58%. In the in-vivo trials, microscopic counting of intact C. vulgaris cells showed an increase in digested intact C. vulgaris cells of PEF-processed C. vulgaris compared to nonprocessed cells ranging from 12.16% to 15.20%. Autotrophic C. vulgaris had a higher digestibility compared to heterotrophic C. vulgaris, with an increase of 7.29, 9.44, and 17.29% in digestibility of C. vulgaris in the 1, 2, and 5% feed respectively. Feeds with PEF-processed C. vulgaris showed no significant increase in digestibility compared to nonprocessed C. vulgaris supplemented feeds. The 5% C. vulgaris feeds showed lower fat digestibility than the 1 and 2% and control feeds. Protein digestibility was lower for all C. vulgaris feeds compared to the control feed. There was a significant linear decreasing effect (P < 0.001) for all digestibility parameters. Except for crude ash digestibility, which first lowered for the 1 and 2% feeds, but then increased at 5% inclusion. Considering this study, including low dosages of 1 and 2% of C. vulgaris in broiler feed does not compromise its digestibility.

4.
J Hazard Mater ; 470: 134304, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615650

RESUMO

In lightly polluted water containing heavy metals, organic matter, and green microalgae, the molecular weight of organic matter may influence both the growth of green microalgae and the concentration of heavy metals. This study elucidates the effects and mechanisms by which different molecular weight fractions of fulvic acid (FA), a model dissolved organic matter component, facilitate the bioaccumulation of hexavalent chromium (Cr(VI)) in a typical green alga, Chlorella vulgaris. Findings show that the addition of FA fractions with molecular weights greater than 10 kDa significantly enhances the enrichment of total chromium and Cr(VI) in algal cells, reaching 21.58%-31.09 % and 16.17 %-22.63 %, respectively. Conversely, the efficiency of chromium enrichment in algal cells was found to decrease with decreasing molecular weight of FA. FA molecular weight within the range of 0.22 µm-30 kDa facilitated chromium enrichment primarily through the algal organic matter (AOM) pathway, with minor contributions from the algal cell proliferation and extracellular polymeric substances (EPS) pathways. However, with decreasing FA molecular weight, the AOM and EPS pathways become less prominent, whereas the algal cell proliferation pathway becomes dominant. These findings provide new insights into the mechanism of chromium enrichment in green algae enhanced by medium molecular weight FA.


Assuntos
Benzopiranos , Chlorella vulgaris , Cromo , Microalgas , Peso Molecular , Poluentes Químicos da Água , Cromo/metabolismo , Cromo/química , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo , Microalgas/metabolismo , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Benzopiranos/química , Benzopiranos/metabolismo
5.
Int J Phytoremediation ; : 1-10, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462818

RESUMO

This research investigated the effect of kitchen wastewater (KWW) concentrations and pretreatment methods on Chlorella vulgaris biomass production, lipid content and nutrient removal. This study was divided into two separate experiments. The first experiment determined the appropriate dilution rate of KWW for the growth of microalgae, sterilized KWW was varied between 25%, 50%, 75%, and 100%(v/v). The result indicated that 50%(v/v) showed the highest nutrient removal by 90.23%, 85.87%, and 80.64% of sCOD, TKN, and TP, respectively. The highest biomass and lipid content were obtained with 50%(v/v) (1.447 g/L, 37.9%). The second experiment was to find an effective physical pretreatment method, which separated the biotic contaminant, non-sterilized KWW was diluted 50%(v/v) and filtered with different mesh size filters (150 µm, 50 µm, and 30 µm) compared with sterilized KWW as a control sample. The result indicated that pretreatment with 50 µm filtration was found highest nutrient removal by 90.51%, 84.74%, and 77.50% of sCOD, TKN, and TP, respectively. The highest biomass and lipid content were obtained with 50 µm filtration (1.496 g/L, 39.4%). Our results support the hypothesis that the optimal dilution and proper filtration of KWW helps create more favorable environment for microalgal growth.


The application of microalgae in actual wastewater treatment was the improper amount of nutrients and the presence of biotic contaminant in the non-sterilized wastewater, which is inhibit the microalgae growth. Hence, it is necessary to develop the technique for controlling biotic contamination and appropriately diluting wastewater to enable full-scale microalgae cultivation in the future.

6.
Water Res ; 254: 121392, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430757

RESUMO

Antibiotic resistance genes (ARGs) and bacteria (ARBs) in the effluent of wastewater treatment plants (WWTPs) are of utmost importance for the dissemination of ARGs in natural aquatic environments. Therefore, there is an urgent need for effective technologies to eliminate WWTP ARGs/ARBs and mitigate the associated risks posed by the discharged ARG in aquatic environments. To test the effective technology for eliminating ARGs/ARBs, we compared the removal of ARGs and ARBs by three different tertiary treatments, namely ultra-violet (UV) disinfection, chlorination disinfection, and Fenton oxidation. Then, the treated wastewater was co-cultured with Chlorella vulgaris (representative of aquatic biota) to investigate the fate of discharged ARGs into the aquatic environment. The results demonstrated that chlorination (at a chlorine concentration of 15 mg/L) and Fenton (at pH 2.73, with 0.005 mol/L Fe2+ and 0.0025 mol/L H2O2) treatment showed higher efficacy in ARG removal (1.8 - 4.17 logs) than UV treatment (15 min) (1.29 - 3.87 logs). Moreover, chlorine at 15 mg/L and Fenton treatment effectively suppressed ARB regeneration while UV treatment for 15 min could not. Regardless of treatments tested in this study, the input of treated wastewater to the Chlorella system increased the number of ARGs and mobile genetic elements (MGEs), indicating the potential risk of ARG dissemination associated with WWTP discharge. Among the wastewater-Chlorella co-culture systems, chlorination resulted in less of an increase in the number of ARGs and MGEs compared to Fenton and UV treatment. When comparing the wastewater systems to the co-culture systems, it was observed that Chlorella vulgaris reduced the number of ARGs and MGEs in chlorination and UV-treated wastewater; however, Chlorella vulgaris promoted ARG survival in Fenton-treated water, suggesting that aquatic microalgae might act as a barrier to ARG dissemination. Overall, chlorination treatment not only effectively removes ARGs and inhibits ARB regeneration but also shows a lower risk of ARG dissemination. Therefore, chlorination is recommended for practical application in controlling the spread of discharged ARGs from WWTP effluent in natural aquatic environments.


Assuntos
Chlorella vulgaris , Microalgas , Purificação da Água , Águas Residuárias , Antibacterianos/farmacologia , Genes Bacterianos , Antagonistas de Receptores de Angiotensina/farmacologia , Microalgas/genética , Halogenação , Peróxido de Hidrogênio , Cloro/farmacologia , Chlorella vulgaris/genética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Resistência Microbiana a Medicamentos/genética , Purificação da Água/métodos
7.
J Biomed Mater Res B Appl Biomater ; 112(4): e35399, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533823

RESUMO

Deep skin burn represents a global morbidity and mortality problem, and the limitation of topical treatment agents has motivated research to development new formulations capable of preventing infections and accelerating healing. The aim of this work was to develop and characterize an emulgel based on collagen (COL) and gelatin (GEL) extracted from fish skin associated with Chlorella vulgaris extract (CE) and silver nitrate (AgNO3). COL and GEL were characterized by physicochemical and thermal analyses; and CE by electrophoresis and its antioxidant capacity. Three emulgels formulations were developed: COL (0.5%) + GEL (2.5%) (E1), COL+GEL+CE (1%) (E2), and COL+GEL+CE + AgNO3 (0.1%) (E3). All formulations were characterized by physicochemical, rheology assays, and preclinical analyses: cytotoxicity (in vitro) and healing potential using a burn model in rats. COL and GEL showed typical physicochemical characteristics, and CE presented 1.3 mg/mL of proteins and antioxidant activity of 76%. Emulgels presented a coherent physicochemical profile and pseudoplastic behavior. Preclinical analysis showed concentration-dependent cytotoxicity against fibroblast and keratinocytes. In addition, all emulgels induced similar percentages of wound contraction and complete wound closure in 28 days. The histopathological analysis showed higher scores for polymorphonuclear cells to E1 and greater neovascularization and re-epithelialization to E3. Then, E3 formulation has potential to improve burn healing, although its use in a clinical setting requires further studies.


Assuntos
Queimaduras , Chlorella vulgaris , Microalgas , Ratos , Animais , Reepitelização , Colágeno/uso terapêutico , Queimaduras/terapia , Neovascularização Patológica , Antioxidantes , Pele/metabolismo
8.
J Environ Manage ; 355: 120447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460326

RESUMO

This research explicitly investigates the utilization of Chlorella Vulgaris sp. microalgae as a renewable source for lipid production, focusing on its application in bioplastic manufacturing. This study employed the supercritical fluid extraction technique employing supercritical CO2 (sCO2) as a green technology to selectively extract and produce PHA's precursor utilizing CO2 solvent as a cleaner solvent compared to conventional extraction method. The study assessed the effects of three extraction parameters, namely temperature (40-60 °C), pressure (15-35 MPa), and solvent flow rate (4-8 ml/min). The pressure, flowrate, and temperature were found to be the most significant parameters affecting the sCO2 extraction. Through Taguchi optimization, the optimal parameters were determined as 60 °C, 35 MPa, and 4 ml/min with the highest lipid yield of 46.74 wt%; above-average findings were reported. Furthermore, the pretreatment process involved significant effects such as crumpled and exhaustive structure, facilitating the efficient extraction of total lipids from the microalgae matrix. This study investigated the microstructure of microalgae biomatrix before and after extraction using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fourier-transform infrared spectroscopy (FTIR) was utilized to assess the potential of the extracted material as a precursor for biodegradable plastic production, with a focus on reduced heavy metal content through inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis. The lipid extracted from Chlorella Vulgaris sp. microalgae was analysed using gas chromatography-mass spectrometry (GC-MS), identifying key constituents, including oleic acid (C18H34O2), n-Hexadecanoic acid (C16H32O2), and octadecanoic acid (C18H36O2), essential for polyhydroxyalkanoate (PHA) formation.


Assuntos
Chlorella vulgaris , Microalgas , Poli-Hidroxialcanoatos , Chlorella vulgaris/química , Microalgas/química , Dióxido de Carbono/química , Solventes/química , Biomassa
9.
Appl Microbiol Biotechnol ; 108(1): 269, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507095

RESUMO

Microalgae are rich in fatty acids, proteins, and other nutrients, which have gained the general attention of researchers all over the world. For the development of Chlorella vulgaris in food and feed industry, this study was conducted to investigate the differences in C. vulgaris' growth and nutritional components under different culture conditions (autotrophic, heterotrophic, photoheterotrophic) and the internal factors through cell counting in combination with transcriptome and nutrient analyses. The results showed that, under the photoheterotrophic condition, Chlorella's growth and the contents of lipid and protein were significantly higher than that under the heterotrophic condition, and the moisture content was lower than that under the heterotrophic condition. The saturated fatty acid content under the photoheterotrophic condition was the lowest, while the polyunsaturated fatty acid content was significantly higher than those under the other two conditions. There were 46,583 differentially expressed genes (DEGs), including 33,039 up-regulated DEGs (70.93%) and 13,544 down-regulated DEGs (29.07%), under the photoheterotrophic condition in comparison with the autotrophic condition. The fold change between the two conditions of samples of up-regulated genes was higher than that of the down-regulated genes. The KEGG enrichment showed that the up-regulated DEGs in the photoheterotrophic condition were significantly enriched in 5 pathways, including protein processing in endoplasmic reticulum pathway, photosynthesis pathway, photosynthesis-antenna protein pathway, endocytosis pathway, and phosphonate and phosphinate metabolism pathway. DEGs related to fatty acid metabolic pathways were significantly enriched in the fatty acid biosynthesis pathway and the biosynthesis of unsaturated fatty acid pathway. The qPCR analysis showed that the expression pattern of the selected genes was consistent with that of transcriptome analysis. The results of this study lay a theoretical foundation for the large-scale production of Chlorella and its application in food, feed, and biodiesel. KEY POINTS: • Nutrient levels under photoheterotrophic condition were higher than other conditions. • Six important pathways were discovered that affect changes in nutritional composition. • Explored genes encode important enzymes in the differential metabolic pathways.


Assuntos
Chlorella vulgaris , Microalgas , Ácidos Graxos/metabolismo , Fotossíntese , Redes e Vias Metabólicas , Nutrientes/análise , Biomassa , Microalgas/metabolismo , Biocombustíveis/análise
10.
Environ Res ; 252(Pt 1): 118755, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38555091

RESUMO

The rising global demand for agricultural products is leading to the widespread application of pesticides, such as spinetoram, resulting in environmental pollution and ecotoxicity to nontarget organisms in aquatic ecosystems. This research focused on assessing the toxicity of spinetoram at various concentrations (0, 0.01, 0.1, 0.5, 1.0, and 3.0 mg L-1) on two common freshwater microalgae, Chlorella vulgaris and Microcystis aeruginosa, to shed light on the ecotoxicological effects of insecticides. Our findings demonstrate that M. aeruginosa is more sensitive to spinetoram than is C. vulgaris, with a concentration-dependent reduction in the growth rate observed for M. aeruginosa, whereas only the highest concentration of spinetoram adversely affected C. vulgaris. At a concentration of 0.01 mg L-1, the growth rate of M. aeruginosa unexpectedly increased beginning on day 7, indicating a potential hormetic effect. Although initial exposure to spinetoram improved the photosynthetic efficiency of both microalgae strains at all concentrations, detrimental effects became apparent at higher concentrations and with prolonged exposure. The photosynthetic efficiency of C. vulgaris recovered, in contrast to that of M. aeruginosa, which exhibited limited recovery. Spinetoram more significantly inhibited the effective quantum yield of PSII (EQY) in M. aeruginosa than in C. vulgaris. Although spinetoram is not designed to target phytoplankton, its toxicity can disrupt primary productivity and modify phytoplankton-consumer interactions via bottom-up control mechanisms. This study enhances our understanding of spinetoram's ecotoxicity and potential effects on aquatic ecosystems.

11.
Plants (Basel) ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38337891

RESUMO

Terrestrial algae are a group of photosynthetic organisms that can survive in extreme conditions. pH is one of the most important factors influencing the distribution of algae in both aquatic and terrestrial ecosystems. The impact of different pH levels on the cell volume and other morphological characteristics of authentic and reference strains of Chlorella vulgaris, Bracteacoccus minor, Pseudoccomyxa simplex, Chlorococcum infusionum, and Vischeria magna were studied. Chlorella vulgaris, Pseudoccomyxa simplex, and Vischeria magna were the most resistant species, retaining their morphology in the range of pH 4-11.5 and pH 3.5-11, respectively. The change in pH towards acidic and alkaline levels caused an increase in the volume of Pseudoccomixa simplex and Vischeria magna cells, according to a polynomial regression model. The volume of Chlorella vulgaris cells increased from a low to high pH according to a linear regression model. Changes in pH levels did not have a significant impact on the volume of Bracteacoccus minor and Chlorococcum infusionum cells. Low and high levels of pH caused an increase in oil-containing substances in Vischeria magna and Bracteacoccus minor cells. Our study revealed a high resistance of the studied species to extreme pH levels, which allows for us to recommend these strains for broader use in biotechnology and conservation studies of natural populations.

12.
Heliyon ; 10(4): e26323, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404824

RESUMO

The integration of photovoltaic technologies within the agricultural framework, known as agrivoltaics, emerges as a promising and sustainable solution to meet the growing global demands for energy and food production. This innovative technology enables the simultaneous utilization of sunlight for both photovoltaics (PV) and photosynthesis. A key challenge in agrivoltaic research involves identifying technologies applicable to a wide range of plant species and diverse geographic regions. To address this challenge, we adopt a multi-experimental and multi-species approach to assess the viability of semi-transparent, spectrally selective thin-film silicon PV technology. Our findings demonstrate compatibility with crop production in controlled environments for both plants and algae. Notably, selective thin-film PV exhibits the potential to enhance crop yields and serves as a photo-protectant. We observe that plant and algal growth increases beneath the selective PV film when supplemented with appropriate diffuse light in the growth environment. Conversely, in situations where light intensity exceeds optimal levels for plant growth, the selective PV film provides a photo-protective effect. These results suggest potential supplementary benefits of employing this technology in regions characterized by excessive light irradiation, where it can contribute to healthy plant growth.

13.
Environ Res ; 250: 118447, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38341075

RESUMO

Shrimp production facilities produce large quantities of wastewater, which consists of organic and inorganic pollutants. High concentrations of these pollutants in shrimp wastewater cause serious environmental problems and, therefore, a method of treating this wastewater is an important research topic. This study investigated the impact of algae and indigenous bacteria on treating shrimp wastewater. A total of four different microalgae cultures, including Chlorococcum minutus, Porphyridum cruentum, Chlorella vulgaris and Chlorella reinhardtii along with two cyanobacterial cultures, Microcystis aeruginosa and Fishcherella muscicola were used with indigenous bacterial cultures to treat shrimp wastewater. The highest soluble chemical oxygen demand (sCOD) removal rate (95%) was observed in the samples that were incubated using F. muscicola. Total dissolved nitrogen was degraded >90% in the C. vulgaris, M. aeruginosa, and C. reinhardtii seeded samples. Dissolved organic nitrogen removal was significantly higher for C. vulgaris (93%) as compared to other treatments. Similarly, phosphate degradation was very successful for all the algae-bacteria consortium (>99%). Moreover, the degradation kinetics were calculated, and the lowest half-life (t1/2) for sCOD (5 days) was recorded for the samples seeded with M. aeruginosa. Similarly, treatment with F. muscicola and C. reinhardtii showed the lowest t1/2 of NH3-N (2.9 days) and phosphate (2.7 days) values. Overall, the results from this study suggest that the symbiotic relationship between indigenous bacteria and algae significantly enhanced the process of shrimp wastewater treatment within 21 days of incubation. The outcome of this study supports resource recovery in the aquaculture sector and could be beneficial to treat a large-scale shrimp facility's wastewater worldwide.

14.
Bioresour Technol ; 394: 130300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185445

RESUMO

In this study, the effect of α-Fe2O3 nanoparticles spiking in urban wastewater (UWW) on growth rate, wastewater treatment ability and bioproducts generation of C. vulgaris and Spirulina was investigated and compared with pure cultivation system. The biomass concentration of C. vulgaris and Spirulina improved by 20 % and 39 % at 10 and 15 mg/L α-Fe2O3, respectively while the both microalgae growth pattern fitted better with Gompertz simulation after treatment with α-Fe2O3. The nutrients mass balance revealed that 1 g of treated C. vulgaris and Spirulina could uptake more COD, TN and TP in comparison to the untreated cells. The lipid generation increased remarkably (C. vulgaris: 45 % and Spirulina: 72 %) after α-Fe2O3 treatment. While, the addition of α-Fe2O3 showed no significant impact on the protein and carbohydrate productivity. Overall, this study evangelize the role of nanoparticles on promoting microalgae applications as a sustainable approach for UWW treatment and promising feedstock for biofuel production.


Assuntos
Chlorella vulgaris , Compostos Férricos , Microalgas , Purificação da Água , Microalgas/metabolismo , Nutrientes , Biomassa , Nanopartículas Magnéticas de Óxido de Ferro , Expressão Gênica , Chlorella vulgaris/metabolismo
15.
Ecotoxicol Environ Saf ; 271: 115996, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277974

RESUMO

Androstenedione (ADSD) is one of the widely detected androgens in diverse aquatic environments. However, there were few reports on the molecular mechanism of Chlorella vulgaris exposure to ADSD. In our previous research, we have investigated the genes associated with chlorophyll metabolism in Chlorella vulgaris response to ADSD. In this study, we focus on continuously up-regulated genes to explore the mechanism underlying Chlorella vulgaris resistance to ADSD toxicity. Chlorella vulgaris was exposed to ADSD with five concentration gradients. The continuously up-regulated genes were enriched by Series Test of Cluster (STC) analysis and verified by qRT-PCR. Microalgae Super Oxidase Dimutase (SOD) and Microalgae Malonic dialdehyde (MDA), two indicators of oxidative stress, were determined by ELISA after exposure to ADSD. The results showed that ADSD can stimulate the production of extracellular polymeric substances (EPS) and lead to enlargement in the cell body of Chlorella vulgaris. In addition, steroid biosynthesis and oxidoreductase activity processes were consistently up-regulated upon exposure to ADSD. In conclusion, our study highlighted the crucial role of phenotypic modification, hormone synthesis, and redox mechanisms in protecting Chlorella vulgaris cells from the harmful effects of ADSD contamination.


Assuntos
Chlorella vulgaris , Microalgas , Androstenodiona/farmacologia , Oxirredução , Estresse Oxidativo/genética
16.
Fish Shellfish Immunol ; 145: 109352, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171430

RESUMO

Nile tilapia reared under intensive conditions was more susceptible for Ichthyophthirius multifilii (I. multifiliis) infection eliciting higher mortality, lower productive rate and further bacterial coinfection with Aeromonas hydrophila (A. hydrophila). The higher potency of magnetic field of iron oxide nanoparticles (NPs) can kill pathogens through inhibiting their viability. Herein, coating of Chlorella vulgaris extract (ChVE) with magnetic iron oxide NPs (Mag iron NPs) can create an external magnetic field that facilitates their release inside the targeted tissues. Thus, the current study is focused on application of new functionalized properties of Mag iron NPs in combination with ChVE and their efficacy to alleviate I. multifiliis and subsequent infection with A. hydrophila in Nile tilapia. Four hundred fingerlings were divided into: control group (with no additives), three groups fed control diet supplemented with ChVE, Mag iron NPs and ChVE@Mag iron NPs for 90 days. At the end of feeding trial fish were challenged with I. multifiliis and at 9 days post challenge was coinfected by A. hydrophila. A remarkable higher growth rate and an improved feed conversion ratio were detected in group fed ChVE@Mag iron-NPs. The maximum expression of antioxidant enzymes in skin and gills tissues (GSH-Px, CAT, and SOD) which came in parallel with higher serum activities of these enzymes was identified in groups received ChVE@Mag iron-NPs. Furthermore, group fed a combination of ChVE and Mag iron-NPs showed a boosted immune response (higher lysozyme, IgM, ACH50, and MPO) prior to challenge with I. multifiliis. In contrast, fish fed ChVE@Mag iron-NPs supplemented diet had lower infection (decreased by 62%) and mortality rates (decreased by 84%), as well as less visible white spots (decreased by 92 % at 12 dpi) on the body surfaces and mucous score. Interestingly, post I. multifiliis the excessive inflammatory response in gill and skin tissues was subsided by feeding on ChVE@Mag iron-NPs as proved by down regulation of IL-1ß, TNFα, COX-2 and iNOS and upregulation of IL-10, and IgM, IgT and Muc-2 genes. Notably, group exposed to I. multifiliis-showed higher mortality when exposed to Aeromonas hydrophilia (increased by 43 %) while group fed ChVE@Mag iron-NPs exhibited lower morality (2%). Moreover, the bacterial loads of A. hydrophilia in fish infected by I. multifiliis and fed control diet were higher than those received dietary supplement of ChVE, Mag iron-NPs and the most reduced load was obtained in group fed ChVE@Mag iron-NPs at 7 dpi. In conclusion, ChVE@Mag iron-NPs fed fish had stronger immune barrier and antioxidant functions of skin and gills, and better survival following I. multifiliis and A. hydrophilia infection.


Assuntos
Chlorella vulgaris , Ciclídeos , Doenças dos Peixes , Animais , Antioxidantes/metabolismo , Adjuvantes Imunológicos/metabolismo , Suplementos Nutricionais , Dieta , Aeromonas hydrophila/fisiologia , Nanopartículas Magnéticas de Óxido de Ferro , Imunoglobulina M/metabolismo , Ferro/metabolismo , Ração Animal/análise , Resistência à Doença
17.
Water Environ Res ; 96(1): e10977, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38254264

RESUMO

The construction of dominant algal species and bacterial strains in algal treatment technology was crucial for pollutant removal. In order to enhance the purification capability of microalgae toward heavy metals in water as well as biogas slurry and biogas, symbiotic systems were respectively constructed using Chlorella vulgaris and two different endogenous bacteria (microalgal endophytic bacteria S395-2 and plant endophytic bacteria BEB7). The results demonstrated that the endogenous bacteria (S395-2 and BEB7) effectively promote the growth, biomass yield, photosynthetic activity, and carbonic anhydrase activity of microalgae. Additionally, BEB7 exhibited superior promotion effects on microalgae compared to S395-2. Moreover, the BEB7-microalgae co-cultivation system not only efficiently removed heavy metals from water but also effectively purified the nutrients and CO2 in biogas slurry. The optimal effect was observed when the ratio of BEB7 to microalgae was 10:1. This study has established a solid theoretical foundation for the application of microalgae in pollutant purification. PRACTITIONER POINTS: Endogenous bacteria effectively promoted microalgal performance. The optimal ratio of BEB7 to microalgae was 10:1. Chlorella vulgaris-BEB7 showed the best removal performance.


Assuntos
Chlorella vulgaris , Poluentes Ambientais , Metais Pesados , Microalgas , Biocombustíveis , Bactérias , Nutrientes , Água
18.
Toxics ; 12(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38251012

RESUMO

C. vulgaris has a positive effect on the removal of nutrients from pig farm biogas slurry. However, swine wastewater often contains heavy metal ions, such as Cu (II), which may have impacts on the nutrient removal performance of C. vulgaris. Additionally, the heavy metal ions in wastewater can be adsorbed by microalgae. In this study, the stress effect of Cu (II) on the growth of Chlorella vulgaris, the Cu (II) removal by microalgae, and the effect of different concentrations of Cu (II) on the nutrient removal efficiency of C. vulgaris in biogas slurries were explored. The results showed that the microalgae biomass of microalgae on the sixth day of the experiment was the highest in the treatment with a Cu (II) concentration of 0.5 mg/L, which was 30.1% higher than that of the 2.5 mg/L group. C. vulgaris had higher removal efficiencies of Cu (II) at a Cu (II) concentration of 0.1~1.5 mg/L. The-OH, C=O, -COOH, and C-O groups on the surface of the algal cells play a significant role in the removal of Cu (II). The removal rates of COD, NH3-N, TN, and TP by C. vulgaris at a Cu (II) concentration of 0.5 mg/L were the highest, which were 89.0%, 53.7%, 69.6%, and 47.3%, respectively.

19.
Bioengineering (Basel) ; 11(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247921

RESUMO

The textile industry generates highly contaminated wastewater. It severely threatens local ecosystems without proper treatment, significantly diminishing biodiversity near the discharge point. With rapid growth rates, microalgae offer an effective solution to mitigate the environmental impact of textile wastewater, and the generated biomass can be valorised. This study sets out to achieve two primary objectives: (i) to assess the removal of pollutants by Chlorella vulgaris from two distinct real textile wastewaters (without dilution) and (ii) to evaluate microalgal biomass composition for further valorisation (in a circular economy approach). Microalgae grew successfully with growth rates ranging from 0.234 ± 0.005 to 0.290 ± 0.003 d-1 and average productivities ranging from 78 ± 3 to 112.39 ± 0.07 mgDW L-1 d-1. All cultures demonstrated a significant reduction in nutrient concentrations for values below the legal limits for discharge, except for COD in effluent 2. Furthermore, the pigment concentration in the culture increased during textile effluent treatment, presenting a distinct advantage over conventional ones due to the economic value of produced biomass and pigments. This study underscores the promise of microalgae in textile wastewater treatment and provides valuable insights into their role in addressing the environmental challenges the textile industry poses.

20.
Sci Total Environ ; 918: 170366, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38280605

RESUMO

Both NPs and PCBs are emerging contaminants widely distributed in the environment, and it is worth exploring whether the combination of the two contaminants causes serious pollution and harm. Therefore, we studied the effects of PS-NPs and PCB-44 alone and together after 96 h and 21 d of exposure to C. pyrenoidosa. The results showed that PS-NPs and PCB-44 affected the cell cycle of C. pyrenoidosa and inhibited its normal growth. Under PS-NPs and PCB-44 stress, the relative conductivity of the algal solution increased, the hydrophobicity of the algal cell surface decreased, and the synthesis of chlorophyll a and chlorophyll b was reduced. In addition to physiological, there are biochemical effects on C. pyrenoidosa. PS-NPs and PCB-44 exposure induced oxidative stress with significant changes in the enzymatic activities of SOD and CAT together with MDA content. Moreover, the relative expression of photosynthesis-related genes (psbA, rbcL, rbcS) all responded, negatively affecting photosynthesis. In particular, significant toxic effects were observed with single exposure to PCB-44 and co-exposure to PS-NPs and PCB-44, with similar trends of effects in acute and chronic experiments. Taken together, exposure to PS-NPs and PCB-44 caused negative effects on the growth and physiological biochemistry of C. pyrenoidosa. These results provide scientific information to further explore the effects of NPs and PCBs on aquatic organisms and ecosystems.


Assuntos
Chlorella vulgaris , Bifenilos Policlorados , Poluentes Químicos da Água , Poliestirenos/toxicidade , Clorofila A , Microplásticos , Bifenilos Policlorados/toxicidade , Ecossistema , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...